Data Analysis for Advising Symposium

March 1, 2017 Gordon State College

Interfacing with IR

David Wells

University System of Georgia

Tips for Working With Your IR Professionals

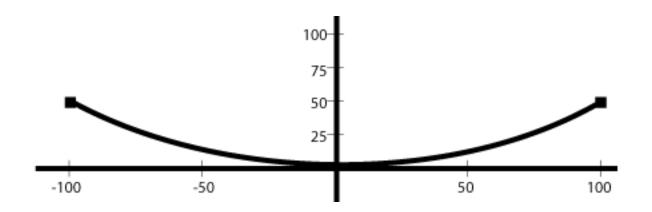
- Don't be shy!
- Sketch out what you want before you go to your IR office
- Don't let the IR lexicon scare you off
- Be willing to negotiate for what you need
- Offer your expertise
- Requesting data is iterative
- You don't need fancy products to use the data

Data and Math Pathways

Lori Hagood and Jonathan Hull

University System of Georgia

It starts with a question.

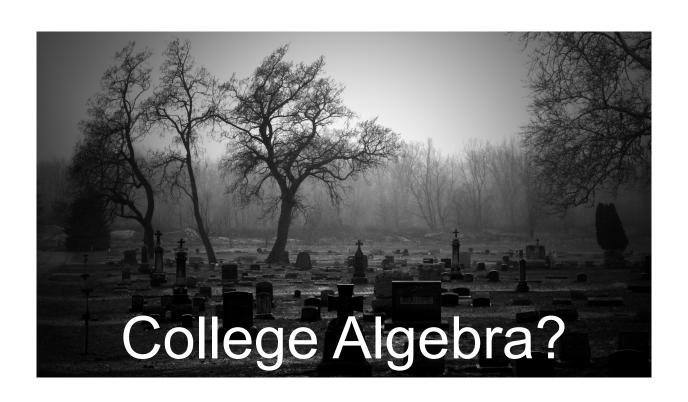

?

Not like this:

1. A parabolic dish with a diameter of 200 cm and a maximum depth of 50 cm is shown below. Find the focus of the dish.

Or this:

2. Find the remainder if $4 x^{200} + 5 x^{95} - 4 x^{21} + 2x - 6$ is divided by x - 1


Or even this:

3. Function f is a function with inverse f^{-1} . Function h is defined by $h(x) = A^*f(x - h) + k$ where A, k and h are constants. Express the inverse function of h in terms of f^{-1} , A, k and h.

But more this:

The Algebra Pathway

According to the Mathematical Association of America, the principle purpose of college algebra is to prepare students for precalculus and calculus.

College Algebra Pre-calculus Calculus Calculus

The Four Math Pathways

For many disciplines, quantitative reasoning or math modeling, perhaps with further study in statistics is the best fit.

STEM	Science, Technology, Mathematics majors	Pre-calculus or Trigonometry		Calculus	
ST	Engineering majors and all Georgia Tech students	Calculus		More Calculus	
Non-STEM	Majors that require calculus at some point in the sequence	College Algebra	>	Pre-calculus » Calculus	
Non-	Everyone Else	Math Modeling or Quantitative Reasoning		Statistics	GUNTS OF TH
					₽ TITE

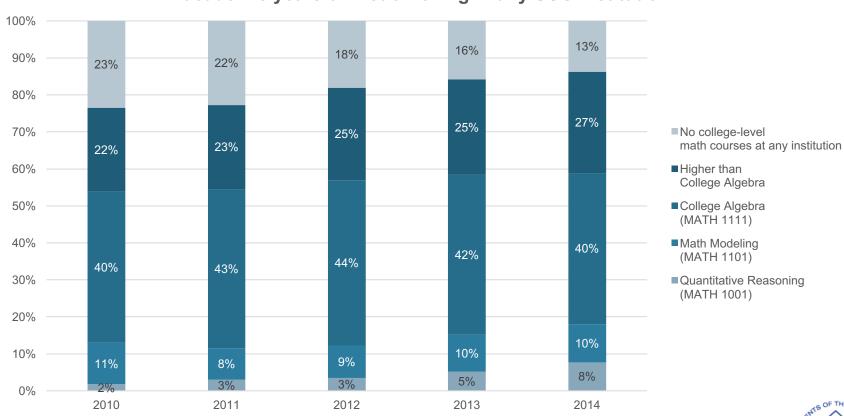
So our question becomes:

- 1. Do we have a problem with College Algebra?
 - A. Yes
 - B. No
 - C. Maybe
 - D. A & B, but not C
 - E. A & C, but not B

Where can we go for answers?

Math Pathways Data Request

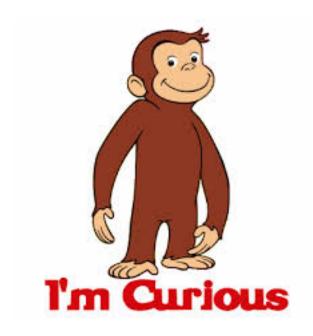
Five years data on:


- 1. # of sections of MATH 1001, 1101, 1111 offered system-wide and at individual institutions
- 2. # and % students starting (first math course) at MATH 1112, 1113, or higher system-wide and at individual institutions. (Lack of standard numbering may hinder this effort.)
- 3. # and % of students in MATH 1001, 1101, and 1111 system-wide and at individual institutions sort by major, or at least by STEM vs. non-STEM
- 4. % of students passing MATH 1001, 1101, and 1111 with grades of "C" or better sort by major, or at least by STEM vs. non-STEM
- 5. % of students who took and passed MATH 1111 (College Algebra) who subsequently took (and passed) Calculus within the next five years.

Digging Deeper

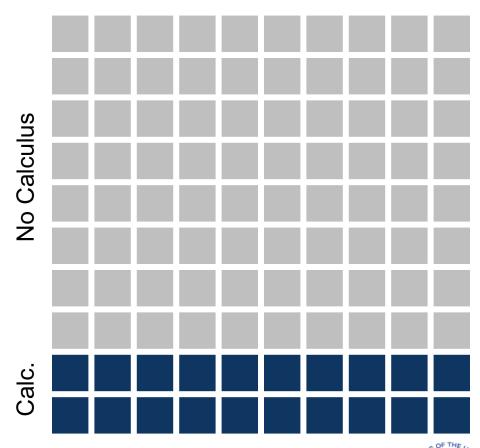
System-wide first-time freshmen (FTF) math course enrollment within 2 academic years of first enrolling in any USG institution

College Algebra = Default Math


College Algebra (MATH 1111) was the most common first math course at 24 USG institutions in 2014.

(ranging from 34% to 90% of students taking College Algebra as their first math course depending on the institution)

But did we have a problem?

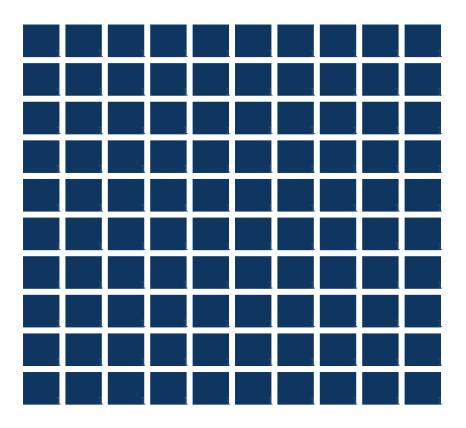


College Algebra Terminus

- Nationally, only about 10% of students who pass college algebra go on to take calculus.
- In the USG, that figure is actually closer to 20%.

Back to math problems:

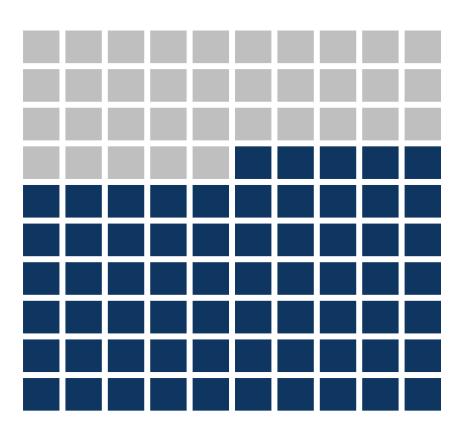
1. If 44,664 students take College Algebra, and 11,298 take a second, higher math later in their academic careers, what percentage of students didn't move beyond College Algebra?


A.
$$44,664 - 11,298 = 33,366$$

 $33,366 \div 44,664 = .747$ or 74.7%

44,646

students enroll in College Algebra



28,377

pass College Algebra

(64%)

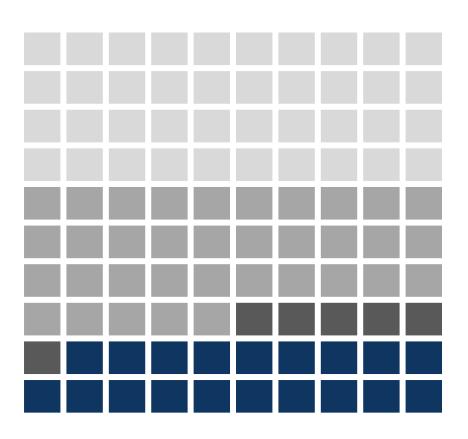


11,298

take Pre-Calculus or Trigonometry

(25% of students who took College Algebra; 40% of students who passed College Algebra)

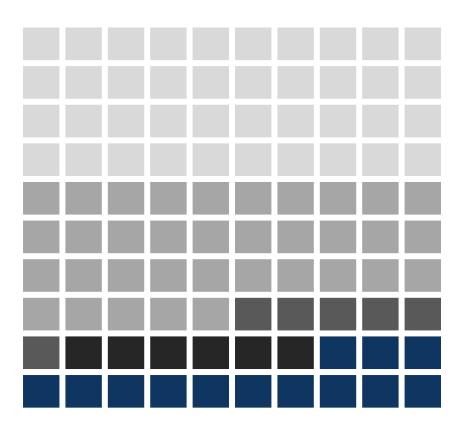
*within 5 years at any USG institution.



8,460

pass Pre-Calculus or Trigonometry

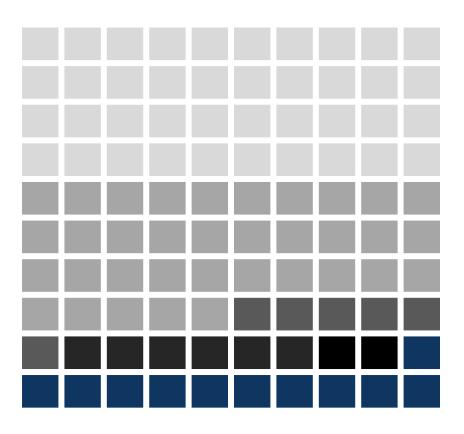
(19% of students who took College Algebra; 19% of students who passed College Algebra)


*within 5 years at any USG institution.

5,909

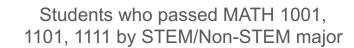
take a math beyond pre-calculus or trig (13% of students who took College Algebra; 20% of students who passed College

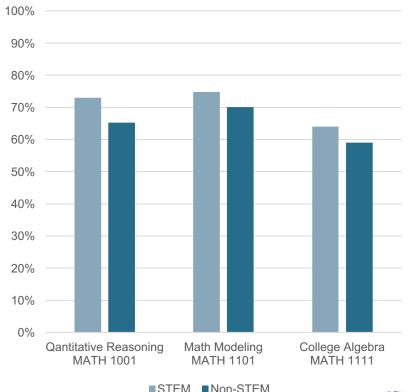
*within 5 years at any USG institution.


Algebra)

4,962

pass a math beyond pre-calculus or trig (11% of students who took College Algebra; 18% of students who passed College Algebra)


*within 5 years at any USG institution.



Math Placements

System wide over the past five years, 76% of students in College Algebra were non-STEM majors.

To sum up

- 40% of students are in College Algebra as their first math
- Pass rates for non-STEM majors in College Algebra are in the upper 50% range.
- One in five students who PASS College Algebra go on to take Calculus.

For 75% of USG students,
College Algebra is the last math class they will take in college.

This is a problem

Students may be advised into College Algebra as a "safe" option.

(e.g., it is guaranteed to "count" even if a student transfers or changes major)

Students may be selecting College Algebra on their own.

So Who Needs College Algebra?

Math Pathways for non-STEM majors (based on Regents Advisory Committee Recommendations ¹USG institutions cannot require students to take a particular course from among MATH 1001, MATH 1101, and MATH 1111 as long as they are not STEM majors. No matter which of these math courses non-STEM students take, it must count toward satisfying Area A2 requirements and it must count toward graduation However, students in non-STEM majors should be ADVISED to take the math course most appropriate for their intended majors. Where MATH 1001 or MATH 1101 is the default recommendation for a particular major students with strong math interests and abilities may opt to take MATH 1111, but MOST students should be advised to take MATH 1001 or MATH 1101. Program/Major Area A2 Mathematics Default Recommendation MATH 1001 (Quantitative Reasoning) MATH 1111 (College Algebra) or MATH 1101 (Introduction to Mathematical Modeling)1 Anthropology Birth-to-Five Teacher Preparation Business Administration Communication Criminal Justice Digital Media Early Childhood Education Economics (non-BBA degree) Exercise and Health Science Exercise Science Family and Consumer Science/Home Economics Education Family/Child Development Film/Media Studies

completega.org/	math-pathways
-----------------	---------------

(based on Academic and Student Affairs Handbook 2.4.4 - Area A2 Quantitative Skills)							
Program/Major	Area A2 Mathematics Default Recommendation						
	MATH 1113 (Precalculus) or higher	Calculus					
Agricultural Science	√3						
Architecture	✓						
Astronomy	✓						
Biology	1						
Chemistry	✓						
Computer Science	✓						
Engineering		✓					
Engineering Technology	✓						
Environmental Science	√3						
Forestry	✓						
Geography (B.S.)	✓						
Geology	✓						
Mathematics	✓						
Mathematics Education	✓						
Pharmacy	✓						
Physical Therapy	✓						
Physics	✓						
Secondary Science Education	√						

Foreign Languages

Math: Gateway to Dreams

Allow me to Answer your questions

- 1. The equation of the parabolic dish is of the form: $x^2 = 4$ a y Point (100, 50) lies on the graph of the parabolic dish, hence $100^2 = 4$ a * 50 solve to find: a = 50 which is also the distance from the vertex at (0, 0) to the focus. Hence the focus is at (0, 50 cm).
- 2. Using remainder theorem, remainder = P(1) = $4*1^{200} + 5*1^{95} 4*1^{21} + 2*1 6 = 1$
- 3. $h^{-1}(x) = f^{-1}((x k) / A) + h$

